Smart Power & energy Conversion (SPeC)
2024년 News in SPeC Lab.
2024년, 기술이전 총 3건 수행 (총 약 1억원)
씨엘피솔루션: 허용정렬편차 개선을 위한 EV 코일 구조 (2.5천만원)
인터모빌리티: DC그리드 컨버터용 변압기 최적설계 및 제어 (5.0천만원)
제타일렉: 계통연계인버터의 단독운전 검출 방법 (3.0천만원)
이은수 교수, World Top 2% 연구자 선정 (2024년)
이은수 교수, 2024년 한국산학기술학회 학술대상
2024년 하계 전력전자학술대회 우수논문상 수상
(논문제목: 머신러닝을 이용한 Planar PCB 코일 최적 설계 연구)
2024년 추계 전력전자학술대회 우수논문상 수상
(논문제목: 머신러닝을 활용한 2D 루프 코일 기반 자기장 집속(MFC) 연구 )
2024년 하계 DC그리드 센터 교육
(주제: 전력변환시스템 및 고주파 변압기 설계)
이은수 교수, 2025년 Physics Conference 2025의 Keynote Speaker 발표 (25년 3월, 일본 도쿄)
(발표주제: Electromagnetism and Electronics)
이은수 교수, 2024년 에리카 학술상 수상 (신진교원상)
이은수 교수, 2024년부터 IEEE Trans. Power Electron. 저널의 Associate Editor (AE) 선정
이은수 교수, 2024년 Applied Science 저널 Special Session의 Guest Editor 완료
이은수 교수, 링크사업단 우수참여교원 선정
(2024년, 인력양성/산학협력)
SPeC 연구분야 소개
Power Conversion System
(Converters & Inverters)
The primary goals of this lab are to develop high-power-density and high-efficiency power conversion systems. The lab focuses on:
1) Grid-Connected Inverters: Grid-Following inverters and Grid-Forming inverters.
2) HVDC & MVDC Power Conversion Systems: Solid-State Transformers (SST) and Modular Multilevel Converters (MMC).
3) Electrical Charging Infrastructure: EV charging stations and EV On-Board Chargers (OBC).
4) Power Circuit Design: Power converter topology and controller designs for high efficiency and high power density.
5) Magnetic Component Design: Optimal design of inductors & transformers applied in converters & inverters.
Wireless Power Transfer Systems
This lab focuses on advanced Wireless Power Transfer (WPT) systems for a variety of applications, including:
1) IoT and Sensors: Supporting simultaneous charging services for multiple devices.
2) Mobile Devices: Developing high efficiency coil design and magnetic in-band communications
3) Home Appliances: Enabling long-distance, high-efficiency operation.
4) Electric Vehicles (EVs): Ensuring large misalignment tolerance, FOD(MOD/LOD), and low EMF/EMI emissions with high efficient operation.
In particular, this lab explores not only Inductive Power Transfer (IPT) but also RF-based WPT for long-distance applications.
Machine Learning applied to Power Systems
Machine learning is now widely applied across various fields, and this lab is focused on integrating machine learning algorithms with power electronics to achieve innovative solutions in:
1) Optimal Design of Magnetic Components: Designing for high efficiency and high power density, and Developing planar PCB-based transformers and inductors.
2) Parameter Optimization: Enhancing efficiency in power converters, Predicting reliability and enabling health monitoring for power electronic systems.
3) Magnetic Field Focusing (MFC): Applications in Wireless Power Transfer (WPT) and cancer treatment, ensuring human safety.