목적: 컨버터에 적용되는 Planar PCB Coil 기반 고주파 변압기의 저손실 & 고전력밀도화를 위해, 머신러닝(Deep Neural Network 기반 강화학습)을 활용한 다변수의 최적해를 단시간내에 도출하여 고주파 변압기를 최적 설계할 수 있는 기술
향후 계획: 컨버터 입출력 조건만 넣을 경우, 컨버터 최적 파라미터 뿐만 아니라 컨버터의 손실, 효율, 사이즈 등 모든 Total solution을 제공할 수 있는 "머신러닝 기반 컨버터 최적 설계 플랫폼" 구축 예정
씨엘피솔루션: 허용정렬편차 개선을 위한 EV 코일 구조 (2.5천만원)
인터모빌리티: DC그리드 컨버터용 변압기 최적설계 및 제어 (5.0천만원)
제타일렉: 계통연계인버터의 단독운전 검출 방법 (3.0천만원)
(논문제목: 머신러닝을 이용한 Planar PCB 코일 최적 설계 연구)
(논문제목: 머신러닝을 활용한 2D 루프 코일 기반 자기장 집속(MFC) 연구 )
(주제: 전력변환시스템 및 고주파 변압기 설계)
(발표주제: Electromagnetism and Electronics)
The primary goals of this lab are to develop high-power-density and high-efficiency power conversion systems. The lab focuses on:
1) Grid-Connected Inverters: Grid-Following inverters and Grid-Forming inverters.
2) HVDC & MVDC Power Conversion Systems: Solid-State Transformers (SST) and Modular Multilevel Converters (MMC).
3) Electrical Charging Infrastructure: EV charging stations and EV On-Board Chargers (OBC).
4) Power Circuit Design: Power converter topology and controller designs for high efficiency and high power density.
5) Magnetic Component Design: Optimal design of inductors & transformers applied in converters & inverters.
This lab focuses on advanced Wireless Power Transfer (WPT) systems for a variety of applications, including:
1) IoT and Sensors: Supporting simultaneous charging services for multiple devices.
2) Mobile Devices: Developing high efficiency coil design and magnetic in-band communications
3) Home Appliances: Enabling long-distance, high-efficiency operation.
4) Electric Vehicles (EVs): Ensuring large misalignment tolerance, FOD(MOD/LOD), and low EMF/EMI emissions with high efficient operation.
In particular, this lab explores not only Inductive Power Transfer (IPT) but also RF-based WPT for long-distance applications.
Machine learning is now widely applied across various fields, and this lab is focused on integrating machine learning algorithms with power electronics to achieve innovative solutions in:
1) Optimal Design of Magnetic Components: Designing for high efficiency and high power density, and Developing planar PCB-based transformers and inductors.
2) Parameter Optimization: Enhancing efficiency in power converters, Predicting reliability and enabling health monitoring for power electronic systems.
3) Magnetic Field Focusing (MFC): Applications in Wireless Power Transfer (WPT) and cancer treatment, ensuring human safety.